Query & search registries

Find & access data using registries.

Setup

!lamin init --storage ./mydata
Hide code cell output
💡 connected lamindb: testuser1/mydata
import lamindb as ln

ln.settings.verbosity = "info"
💡 connected lamindb: testuser1/mydata

We’ll need some toy data:

ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()
Hide code cell output
❗ no run & transform get linked, consider calling ln.track()
✅ storing artifact '08xrlE4OG68OqFT5uNK8' at '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/08xrlE4OG68OqFT5uNK8.jpg'
❗ no run & transform get linked, consider calling ln.track()
✅ storing artifact 'VGLlUyzsmgMDTOywZNxC' at '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/VGLlUyzsmgMDTOywZNxC.parquet'
❗ no run & transform get linked, consider calling ln.track()
✅ storing artifact 'QVDzUN8FLQs5plEucqQ1' at '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/QVDzUN8FLQs5plEucqQ1.fastq.gz'
Artifact(updated_at=2024-05-20 08:58:08 UTC, uid='QVDzUN8FLQs5plEucqQ1', suffix='.fastq.gz', description='My fastq', size=20, hash='hi7ZmAzz8sfMd3vIQr-57Q', hash_type='md5', visibility=1, key_is_virtual=True, created_by_id=1, storage_id=1)

Look up metadata

For entities where we don’t store more than 100k records, a look up object can be a convenient way of selecting a record.

Consider the User registry:

users = ln.User.lookup(field="handle")

With auto-complete, we find a user:

user = users.testuser1
user
User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2024-05-20 08:58:06 UTC)

Note

You can also auto-complete in a dictionary:

users_dict = ln.User.lookup().dict()

Filter by metadata

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
version created_at created_by_id updated_at uid storage_id key suffix accessor description size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual
id
1 None 2024-05-20 08:58:08.339095+00:00 1 2024-05-20 08:58:08.339167+00:00 08xrlE4OG68OqFT5uNK8 1 None .jpg None My image 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None None None 1 True
2 None 2024-05-20 08:58:08.458688+00:00 1 2024-05-20 08:58:08.458741+00:00 VGLlUyzsmgMDTOywZNxC 1 None .parquet DataFrame The iris collection 5629 ah24lV9Ncc8nPL0MumEsdw md5 None None None None 1 True
3 None 2024-05-20 08:58:08.466297+00:00 1 2024-05-20 08:58:08.466341+00:00 QVDzUN8FLQs5plEucqQ1 1 None .fastq.gz None My fastq 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None None None 1 True

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record stored as a row.

  • .all(): An indexable django QuerySet.

  • .list(): A list of records.

  • .one(): Exactly one record. Will raise an error if there is none.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for metadata

ln.Artifact.search("iris").df()
version created_at created_by_id updated_at uid storage_id key suffix accessor description size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual
id
2 None 2024-05-20 08:58:08.458688+00:00 1 2024-05-20 08:58:08.458741+00:00 VGLlUyzsmgMDTOywZNxC 1 None .parquet DataFrame The iris collection 5629 ah24lV9Ncc8nPL0MumEsdw md5 None None None None 1 True

Let us create 500 notebook objects with fake titles and save them:

ln.save(
    [
        ln.Transform(name=title, type="notebook")
        for title in ln.core.datasets.fake_bio_notebook_titles(n=500)
    ]
)

We can now search for any combination of terms:

ln.Transform.search("intestine").df().head()
version uid name key description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
9 None DcTc5KhdouRC Intestine IgG3 IgG3 Connective-tissue macrophage. None None notebook None None None None 2024-05-20 08:58:09.563151+00:00 2024-05-20 08:58:09.563164+00:00 1
22 None 1w9PkGLPgz1y Efficiency intestine intestinal intestine visu... None None notebook None None None None 2024-05-20 08:58:09.565117+00:00 2024-05-20 08:58:09.565130+00:00 1
43 None Wsny6GWDfKdu Thymus intestine result IgY IgA IgM IgG2. None None notebook None None None None 2024-05-20 08:58:09.568252+00:00 2024-05-20 08:58:09.568265+00:00 1
45 None Cf9A90HyplM0 Efficiency visualize IgG2 rank Mesangial cell ... None None notebook None None None None 2024-05-20 08:58:09.568549+00:00 2024-05-20 08:58:09.568562+00:00 1
64 None fTAvwHVev9Yu Rank classify IgM study intestine IgM. None None notebook None None None None 2024-05-20 08:58:09.571423+00:00 2024-05-20 08:58:09.571437+00:00 1

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations:

ln.Artifact.filter(run__created_by__handle__startswith="testuse").df()
version created_at updated_at uid key suffix accessor description size hash hash_type n_objects n_observations visibility key_is_virtual created_by_id storage_id transform_id run_id
id

The filter selects all artifacts based on the users who ran the generating notebook.

(Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.)

Beyond __startswith, Django supports about two dozen field comparators field__comparator=value.

Here are some of them.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
version created_at created_by_id updated_at uid storage_id key suffix accessor description size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual
id
1 None 2024-05-20 08:58:08.339095+00:00 1 2024-05-20 08:58:08.339167+00:00 08xrlE4OG68OqFT5uNK8 1 None .jpg None My image 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None None None 1 True

less than/ greater than

Or subset to artifacts greater than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
version created_at created_by_id updated_at uid storage_id key suffix accessor description size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual
id
2 None 2024-05-20 08:58:08.458688+00:00 1 2024-05-20 08:58:08.458741+00:00 VGLlUyzsmgMDTOywZNxC 1 None .parquet DataFrame The iris collection 5629 ah24lV9Ncc8nPL0MumEsdw md5 None None None None 1 True
3 None 2024-05-20 08:58:08.466297+00:00 1 2024-05-20 08:58:08.466341+00:00 QVDzUN8FLQs5plEucqQ1 1 None .fastq.gz None My fastq 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None None None 1 True

or

from django.db.models import Q

ln.Artifact.filter().filter(Q(suffix=".jpg") | Q(suffix=".fastq.gz")).df()
version created_at created_by_id updated_at uid storage_id key suffix accessor description size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual
id
1 None 2024-05-20 08:58:08.339095+00:00 1 2024-05-20 08:58:08.339167+00:00 08xrlE4OG68OqFT5uNK8 1 None .jpg None My image 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None None None 1 True
3 None 2024-05-20 08:58:08.466297+00:00 1 2024-05-20 08:58:08.466341+00:00 QVDzUN8FLQs5plEucqQ1 1 None .fastq.gz None My fastq 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None None None 1 True

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
version created_at created_by_id updated_at uid storage_id key suffix accessor description size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual
id
1 None 2024-05-20 08:58:08.339095+00:00 1 2024-05-20 08:58:08.339167+00:00 08xrlE4OG68OqFT5uNK8 1 None .jpg None My image 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None None None 1 True
3 None 2024-05-20 08:58:08.466297+00:00 1 2024-05-20 08:58:08.466341+00:00 QVDzUN8FLQs5plEucqQ1 1 None .fastq.gz None My fastq 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None None None 1 True

order by

ln.Artifact.filter().order_by("-updated_at").df()
version created_at created_by_id updated_at uid storage_id key suffix accessor description size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual
id
3 None 2024-05-20 08:58:08.466297+00:00 1 2024-05-20 08:58:08.466341+00:00 QVDzUN8FLQs5plEucqQ1 1 None .fastq.gz None My fastq 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None None None 1 True
2 None 2024-05-20 08:58:08.458688+00:00 1 2024-05-20 08:58:08.458741+00:00 VGLlUyzsmgMDTOywZNxC 1 None .parquet DataFrame The iris collection 5629 ah24lV9Ncc8nPL0MumEsdw md5 None None None None 1 True
1 None 2024-05-20 08:58:08.339095+00:00 1 2024-05-20 08:58:08.339167+00:00 08xrlE4OG68OqFT5uNK8 1 None .jpg None My image 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None None None 1 True

contains

ln.Transform.filter(name__contains="search").df().head(10)
version uid name key description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
13 None NmRGtti082RY Igy Sebaceous gland IgG4 IgG2 research IgG Gol... None None notebook None None None None 2024-05-20 08:58:09.563754+00:00 2024-05-20 08:58:09.563768+00:00 1
16 None xhPdwN25JfS0 Iga classify IgG1 research. None None notebook None None None None 2024-05-20 08:58:09.564224+00:00 2024-05-20 08:58:09.564238+00:00 1
27 None k3ny74UQqJJy Iga Sebaceous gland IgG1 result research study. None None notebook None None None None 2024-05-20 08:58:09.565860+00:00 2024-05-20 08:58:09.565873+00:00 1
28 None gnMWyP2oFGGu Research IgA efficiency IgG2 Subcutaneous tiss... None None notebook None None None None 2024-05-20 08:58:09.566009+00:00 2024-05-20 08:58:09.566022+00:00 1
33 None jPmdm2LE7TEE Taste Bud Supporting Cells research Subcutaneo... None None notebook None None None None 2024-05-20 08:58:09.566749+00:00 2024-05-20 08:58:09.566763+00:00 1
34 None VBwlyjPNUb4O Research Sebaceous gland research Muscular sys... None None notebook None None None None 2024-05-20 08:58:09.566898+00:00 2024-05-20 08:58:09.566911+00:00 1
36 None KU4E6zNmuTDV Research Cartwheel cells IgG3 Vagina intestina... None None notebook None None None None 2024-05-20 08:58:09.567194+00:00 2024-05-20 08:58:09.567208+00:00 1
40 None U34NvKPaX3lj Parotid Glands Muscular system IgG3 IgE Vagina... None None notebook None None None None 2024-05-20 08:58:09.567789+00:00 2024-05-20 08:58:09.567802+00:00 1
48 None MpwSXHp392r3 Igm Mesangial cell Connective-tissue macrophag... None None notebook None None None None 2024-05-20 08:58:09.569026+00:00 2024-05-20 08:58:09.569040+00:00 1
75 None 38NEYTmxYUI4 Ameloblast Muscular system IgE Cartwheel cells... None None notebook None None None None 2024-05-20 08:58:09.573108+00:00 2024-05-20 08:58:09.573121+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(10)
version uid name key description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
13 None NmRGtti082RY Igy Sebaceous gland IgG4 IgG2 research IgG Gol... None None notebook None None None None 2024-05-20 08:58:09.563754+00:00 2024-05-20 08:58:09.563768+00:00 1
16 None xhPdwN25JfS0 Iga classify IgG1 research. None None notebook None None None None 2024-05-20 08:58:09.564224+00:00 2024-05-20 08:58:09.564238+00:00 1
27 None k3ny74UQqJJy Iga Sebaceous gland IgG1 result research study. None None notebook None None None None 2024-05-20 08:58:09.565860+00:00 2024-05-20 08:58:09.565873+00:00 1
28 None gnMWyP2oFGGu Research IgA efficiency IgG2 Subcutaneous tiss... None None notebook None None None None 2024-05-20 08:58:09.566009+00:00 2024-05-20 08:58:09.566022+00:00 1
33 None jPmdm2LE7TEE Taste Bud Supporting Cells research Subcutaneo... None None notebook None None None None 2024-05-20 08:58:09.566749+00:00 2024-05-20 08:58:09.566763+00:00 1
34 None VBwlyjPNUb4O Research Sebaceous gland research Muscular sys... None None notebook None None None None 2024-05-20 08:58:09.566898+00:00 2024-05-20 08:58:09.566911+00:00 1
36 None KU4E6zNmuTDV Research Cartwheel cells IgG3 Vagina intestina... None None notebook None None None None 2024-05-20 08:58:09.567194+00:00 2024-05-20 08:58:09.567208+00:00 1
40 None U34NvKPaX3lj Parotid Glands Muscular system IgG3 IgE Vagina... None None notebook None None None None 2024-05-20 08:58:09.567789+00:00 2024-05-20 08:58:09.567802+00:00 1
48 None MpwSXHp392r3 Igm Mesangial cell Connective-tissue macrophag... None None notebook None None None None 2024-05-20 08:58:09.569026+00:00 2024-05-20 08:58:09.569040+00:00 1
75 None 38NEYTmxYUI4 Ameloblast Muscular system IgE Cartwheel cells... None None notebook None None None None 2024-05-20 08:58:09.573108+00:00 2024-05-20 08:58:09.573121+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
version uid name key description type latest_report_id source_code_id reference reference_type created_at updated_at created_by_id
id
28 None gnMWyP2oFGGu Research IgA efficiency IgG2 Subcutaneous tiss... None None notebook None None None None 2024-05-20 08:58:09.566009+00:00 2024-05-20 08:58:09.566022+00:00 1
34 None VBwlyjPNUb4O Research Sebaceous gland research Muscular sys... None None notebook None None None None 2024-05-20 08:58:09.566898+00:00 2024-05-20 08:58:09.566911+00:00 1
36 None KU4E6zNmuTDV Research Cartwheel cells IgG3 Vagina intestina... None None notebook None None None None 2024-05-20 08:58:09.567194+00:00 2024-05-20 08:58:09.567208+00:00 1
88 None Rs8nwgOeSnok Research IgA Connective-tissue macrophage inte... None None notebook None None None None 2024-05-20 08:58:09.578096+00:00 2024-05-20 08:58:09.578118+00:00 1
267 None oxixfS0gbhH7 Research study Vagina Cartwheel cells Adrenerg... None None notebook None None None None 2024-05-20 08:58:09.609862+00:00 2024-05-20 08:58:09.609875+00:00 1
292 None X9aG49T8XCbG Research Ameloblast IgG2 Cartwheel cells. None None notebook None None None None 2024-05-20 08:58:09.613552+00:00 2024-05-20 08:58:09.613565+00:00 1
331 None LW7NRn2VsyVL Research investigate cluster Cartwheel cells. None None notebook None None None None 2024-05-20 08:58:09.621777+00:00 2024-05-20 08:58:09.621790+00:00 1
420 None ZOVyFwTNUoZ5 Research intestinal Taste bud supporting cells... None None notebook None None None None 2024-05-20 08:58:09.637291+00:00 2024-05-20 08:58:09.637304+00:00 1
460 None 6TOkrutaRt3W Research candidate IgM IgG3 IgG4. None None notebook None None None None 2024-05-20 08:58:09.645768+00:00 2024-05-20 08:58:09.645781+00:00 1
Hide code cell content
# clean up test instance
!lamin delete --force mydata
!rm -r mydata
Traceback (most recent call last):
  File "/opt/hostedtoolcache/Python/3.11.9/x64/bin/lamin", line 8, in <module>
    sys.exit(main())
             ^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/rich_click/rich_command.py", line 367, in __call__
    return super().__call__(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/click/core.py", line 1157, in __call__
    return self.main(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/rich_click/rich_command.py", line 152, in main
    rv = self.invoke(ctx)
         ^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/click/core.py", line 1688, in invoke
    return _process_result(sub_ctx.command.invoke(sub_ctx))
                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/click/core.py", line 1434, in invoke
    return ctx.invoke(self.callback, **ctx.params)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/click/core.py", line 783, in invoke
    return __callback(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/lamin_cli/__main__.py", line 103, in delete
    return delete(instance, force=force)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/lamindb_setup/_delete.py", line 98, in delete
    n_objects = check_storage_is_empty(
                ^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/lamindb_setup/core/upath.py", line 760, in check_storage_is_empty
    raise InstanceNotEmpty(message)
lamindb_setup.core.upath.InstanceNotEmpty: Storage /home/runner/work/lamindb/lamindb/docs/mydata/.lamindb contains 3 objects ('_is_initialized' ignored) - delete them prior to deleting the instance
['/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/08xrlE4OG68OqFT5uNK8.jpg', '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/QVDzUN8FLQs5plEucqQ1.fastq.gz', '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/VGLlUyzsmgMDTOywZNxC.parquet', '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/_is_initialized']