Query cellxgene-census using TileDB-SOMAΒΆ
The first guide queried metadata and h5ad artifacts directly through LaminDB.
This guide uses the TileDB-SOMA API to run similar queries.
SetupΒΆ
Load your LaminDB instance for storing queried data:
!lamin init --storage ./test-cellxgene --schema bionty
π‘ connected lamindb: testuser1/test-cellxgene
import lamindb as ln
import bionty as bt
import cellxgene_census
census_version = "2023-07-25"
π‘ connected lamindb: testuser1/test-cellxgene
Create lookup objectsΒΆ
We use metadata records in the laminlabs/cellxgene
instance to generate lookups:
source = "laminlabs/cellxgene"
human = "homo_sapiens"
features = ln.Feature.using(source).lookup(return_field="name")
assays = bt.ExperimentalFactor.using(source).lookup(return_field="name")
cell_types = bt.CellType.using(source).lookup(return_field="name")
tissues = bt.Tissue.using(source).lookup(return_field="name")
ulabels = ln.ULabel.using(source).lookup()
suspension_types = ulabels.is_suspension_type.children.all().lookup(return_field="name")
Query dataΒΆ
value_filter = (
f'{features.tissue} == "{tissues.brain}" and {features.cell_type} in'
f' ["{cell_types.microglial_cell}", "{cell_types.neuron}"] and'
f' {features.suspension_type} == "{suspension_types.cell}" and {features.assay} =='
f' "{assays.ln_10x_3_v3}"'
)
value_filter
'tissue == "brain" and cell_type in ["microglial cell", "neuron"] and suspension_type == "cell" and assay == "10x 3\' v3"'
%%time
with cellxgene_census.open_soma(census_version=census_version) as census:
# Reads SOMADataFrame as a slice
cell_metadata = census["census_data"][human].obs.read(value_filter=value_filter)
# Concatenates results to pyarrow.Table
cell_metadata = cell_metadata.concat()
# Converts to pandas.DataFrame
cell_metadata = cell_metadata.to_pandas()
CPU times: user 4.41 s, sys: 1.58 s, total: 5.99 s
Wall time: 8.45 s
cell_metadata.shape
(66418, 21)
cell_metadata.head()
soma_joinid | dataset_id | assay | assay_ontology_term_id | cell_type | cell_type_ontology_term_id | development_stage | development_stage_ontology_term_id | disease | disease_ontology_term_id | ... | is_primary_data | self_reported_ethnicity | self_reported_ethnicity_ontology_term_id | sex | sex_ontology_term_id | suspension_type | tissue | tissue_ontology_term_id | tissue_general | tissue_general_ontology_term_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 29071956 | c888b684-6c51-431f-972a-6c963044cef0 | 10x 3' v3 | EFO:0009922 | microglial cell | CL:0000129 | 68-year-old human stage | HsapDv:0000162 | glioblastoma | MONDO:0018177 | ... | False | unknown | unknown | female | PATO:0000383 | cell | brain | UBERON:0000955 | brain | UBERON:0000955 |
1 | 29071957 | c888b684-6c51-431f-972a-6c963044cef0 | 10x 3' v3 | EFO:0009922 | microglial cell | CL:0000129 | 68-year-old human stage | HsapDv:0000162 | glioblastoma | MONDO:0018177 | ... | False | unknown | unknown | female | PATO:0000383 | cell | brain | UBERON:0000955 | brain | UBERON:0000955 |
2 | 29071964 | c888b684-6c51-431f-972a-6c963044cef0 | 10x 3' v3 | EFO:0009922 | microglial cell | CL:0000129 | 68-year-old human stage | HsapDv:0000162 | glioblastoma | MONDO:0018177 | ... | False | unknown | unknown | female | PATO:0000383 | cell | brain | UBERON:0000955 | brain | UBERON:0000955 |
3 | 29071966 | c888b684-6c51-431f-972a-6c963044cef0 | 10x 3' v3 | EFO:0009922 | microglial cell | CL:0000129 | 68-year-old human stage | HsapDv:0000162 | glioblastoma | MONDO:0018177 | ... | False | unknown | unknown | female | PATO:0000383 | cell | brain | UBERON:0000955 | brain | UBERON:0000955 |
4 | 29071967 | c888b684-6c51-431f-972a-6c963044cef0 | 10x 3' v3 | EFO:0009922 | microglial cell | CL:0000129 | 68-year-old human stage | HsapDv:0000162 | glioblastoma | MONDO:0018177 | ... | False | unknown | unknown | female | PATO:0000383 | cell | brain | UBERON:0000955 | brain | UBERON:0000955 |
5 rows Γ 21 columns
Create AnnDataΒΆ
%%time
with cellxgene_census.open_soma(census_version=census_version) as census:
adata = cellxgene_census.get_anndata(
census=census,
organism=human,
obs_value_filter=value_filter,
column_names={
"obs": [
features.assay,
features.cell_type,
features.tissue,
features.disease,
features.suspension_type,
]
},
)
CPU times: user 36 s, sys: 10.4 s, total: 46.4 s
Wall time: 34.8 s
adata.var = adata.var.set_index("feature_id")
adata
AnnData object with n_obs Γ n_vars = 66418 Γ 60664
obs: 'assay', 'cell_type', 'tissue', 'disease', 'suspension_type'
var: 'soma_joinid', 'feature_name', 'feature_length'
adata.var.head()
soma_joinid | feature_name | feature_length | |
---|---|---|---|
feature_id | |||
ENSG00000121410 | 0 | A1BG | 3999 |
ENSG00000268895 | 1 | A1BG-AS1 | 3374 |
ENSG00000148584 | 2 | A1CF | 9603 |
ENSG00000175899 | 3 | A2M | 6318 |
ENSG00000245105 | 4 | A2M-AS1 | 2948 |
adata.obs.head()
assay | cell_type | tissue | disease | suspension_type | |
---|---|---|---|---|---|
0 | 10x 3' v3 | microglial cell | brain | glioblastoma | cell |
1 | 10x 3' v3 | microglial cell | brain | glioblastoma | cell |
2 | 10x 3' v3 | microglial cell | brain | glioblastoma | cell |
3 | 10x 3' v3 | microglial cell | brain | glioblastoma | cell |
4 | 10x 3' v3 | microglial cell | brain | glioblastoma | cell |
Register the queried AnnDataΒΆ
ln.transform.stem_uid = "6oq3VJy5yxIU"
ln.transform.version = "0"
ln.track()
π‘ notebook imports: bionty==0.43.0 cellxgene-census==1.13.1 lamindb==0.72.0
π‘ saved: Transform(version='0', uid='6oq3VJy5yxIU6K79', name='Query cellxgene-census using TileDB-SOMA', key='query-census', type='notebook', updated_at=2024-05-19 23:23:49 UTC, created_by_id=1)
π‘ saved: Run(uid='KsOcBTKTgpI7RqPUnyQ4', transform_id=1, created_by_id=1)
Register genes and features:
bt.settings.organism = "human"
genes = bt.Gene.from_values(adata.var_names, field=bt.Gene.ensembl_gene_id)
ln.save(genes)
features = ln.Feature.from_df(adata.obs)
ln.save(features)
β did not create Gene records for 147 non-validated ensembl_gene_ids: 'ENSG00000112096', 'ENSG00000137808', 'ENSG00000161149', 'ENSG00000182230', 'ENSG00000203812', 'ENSG00000204092', 'ENSG00000205485', 'ENSG00000212951', 'ENSG00000215271', 'ENSG00000221995', 'ENSG00000224739', 'ENSG00000224745', 'ENSG00000225178', 'ENSG00000225932', 'ENSG00000226377', 'ENSG00000226380', 'ENSG00000226403', 'ENSG00000227021', 'ENSG00000227220', 'ENSG00000227902'
Register the AnnData
object:
artifact = ln.Artifact.from_anndata(
adata,
description=(
"microglial and neuron cell data from 10x 3' v3 in brain queried from Census"
),
)
artifact.save()
Artifact(updated_at=2024-05-19 23:24:09 UTC, uid='Y8LTBoBTHNgLdPbgWAWh', suffix='.h5ad', accessor='AnnData', description='microglial and neuron cell data from 10x 3' v3 in brain queried from Census', size=674995866, hash='v8QkSfHA4jUocUskUyBSzl', hash_type='sha1-fl', visibility=1, key_is_virtual=True, created_by_id=1, storage_id=1, transform_id=1, run_id=1)
Link validated metadata:
artifact.features.add_from_anndata(var_field=bt.Gene.ensembl_gene_id)
β 147 terms (0.20%) are not validated for ensembl_gene_id: ENSG00000285162, ENSG00000276814, ENSG00000282080, ENSG00000237513, ENSG00000239467, ENSG00000236886, ENSG00000273576, ENSG00000256427, ENSG00000272040, ENSG00000278198, ENSG00000273496, ENSG00000279765, ENSG00000224739, ENSG00000226380, ENSG00000285106, ENSG00000272551, ENSG00000237133, ENSG00000272267, ENSG00000271870, ENSG00000227902, ...
features_remote = ln.Feature.using(source).lookup().dict()
features = ln.Feature.lookup().dict()
for col, orm in {
"assay": bt.ExperimentalFactor,
"cell_type": bt.CellType,
"tissue": bt.Tissue,
"disease": bt.Disease,
"suspension_type": ln.ULabel,
}.items():
labels = orm.from_values(adata.obs[col])
if len(labels) > 0:
ln.save(labels)
else:
labels = [orm(name=name) for name in adata.obs[col].unique()]
ln.save(labels)
artifact.labels.add(labels, features.get(col))
Show code cell output
β now recursing through parents: this only happens once, but is much slower than bulk saving
β now recursing through parents: this only happens once, but is much slower than bulk saving
β now recursing through parents: this only happens once, but is much slower than bulk saving
β now recursing through parents: this only happens once, but is much slower than bulk saving
β did not create ULabel record for 1 non-validated name: 'cell'
artifact.describe()
Artifact(updated_at=2024-05-19 23:24:16 UTC, uid='Y8LTBoBTHNgLdPbgWAWh', suffix='.h5ad', accessor='AnnData', description='microglial and neuron cell data from 10x 3' v3 in brain queried from Census', size=674995866, hash='v8QkSfHA4jUocUskUyBSzl', hash_type='sha1-fl', visibility=1, key_is_virtual=True)
Provenance:
π created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1')
π storage: uid='3fuLNKZP09PJ', root='/home/runner/work/cellxgene-lamin/cellxgene-lamin/docs/test-cellxgene', type='local', instance_uid='5lZgSHvkhwQL')
π transform: Transform(version='0', uid='6oq3VJy5yxIU6K79', name='Query cellxgene-census using TileDB-SOMA', key='query-census', type='notebook')
π run: Run(uid='KsOcBTKTgpI7RqPUnyQ4', started_at=2024-05-19 23:23:49 UTC, is_consecutive=True)
Features:
var: FeatureSet(uid='vLV9VSZwPn9KGHZFJ4Xv', n=60517, dtype='float', registry='bionty.Gene')
'A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2ML1-AS1', 'A3GALT2', 'A4GALT', 'A4GNT', 'AAAS', 'AACS', 'AADAC', 'AADACL2', 'AADACL2-AS1', 'AADACL3', 'AADACL4', 'AADAT', 'PRXL2C', 'AAGAB'
obs: FeatureSet(uid='kIgizsnsj83DA1lkZ2CZ', n=5, registry='Feature')
π assay (5, cat[bionty.ExperimentalFactor]): '10x 3' v3'
π cell_type (5, cat[bionty.CellType]): 'microglial cell', 'neuron'
π tissue (5, cat[bionty.Tissue]): 'brain'
π disease (5, cat[bionty.Disease]): 'glioblastoma'
π suspension_type (5, cat[ULabel]): 'cell'
Labels:
π tissues (1, bionty.Tissue): 'brain'
π cell_types (2, bionty.CellType): 'microglial cell', 'neuron'
π diseases (1, bionty.Disease): 'glioblastoma'
π experimental_factors (1, bionty.ExperimentalFactor): '10x 3' v3'
π ulabels (1, ULabel): 'cell'
# clean up test instance
!lamin delete --force test-cellxgene
!rm -r ./test-cellxgene
Show code cell output
Traceback (most recent call last):
File "/opt/hostedtoolcache/Python/3.10.14/x64/bin/lamin", line 8, in <module>
sys.exit(main())
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/rich_click/rich_command.py", line 367, in __call__
return super().__call__(*args, **kwargs)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1157, in __call__
return self.main(*args, **kwargs)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/rich_click/rich_command.py", line 152, in main
rv = self.invoke(ctx)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1688, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 1434, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/click/core.py", line 783, in invoke
return __callback(*args, **kwargs)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamin_cli/__main__.py", line 103, in delete
return delete(instance, force=force)
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamindb_setup/_delete.py", line 98, in delete
n_objects = check_storage_is_empty(
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/lamindb_setup/core/upath.py", line 760, in check_storage_is_empty
raise InstanceNotEmpty(message)
lamindb_setup.core.upath.InstanceNotEmpty: Storage /home/runner/work/cellxgene-lamin/cellxgene-lamin/docs/test-cellxgene/.lamindb contains 1 objects ('_is_initialized' ignored) - delete them prior to deleting the instance
['/home/runner/work/cellxgene-lamin/cellxgene-lamin/docs/test-cellxgene/.lamindb/Y8LTBoBTHNgLdPbgWAWh.h5ad', '/home/runner/work/cellxgene-lamin/cellxgene-lamin/docs/test-cellxgene/.lamindb/_is_initialized']